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Abstract

Flow of multicomponent mixtures with interphase mass transfer through porous media has been
analyzed by combining thermodynamics of real ¯uids, the use of immiscible Boltzmann code and
reconstructed porous media. A general algorithm is detailed and applied for comparison with Poiseuille
¯ow where a semi-analytical solution can be found. A series of structures and phenomena are then
analysed; attention is mostly focused on liquid to gas transition (or vaporization) and retrograde
condensation; phase distribution and macroscopic quantities such as composition, liquid saturation and
pressure evolution are systematically plotted. The role of the location of nucleation sites is shortly
investigated with a periodically constricted tube. The total mass ¯ow rate in¯uenced the phase
distribution and circulation in a two-dimensional network. Finally, relative permeabilities of a
reconstructed medium are discussed; an interesting feature is that they follow hysteresis cycles for
retrograde condensation. 7 2001 Elsevier Science Ltd. All rights reserved.

Keywords: Porous media; Two-phase ¯ow; Phase change; Lattice Boltzmann method; Reconstructed media; Peng±

Robinson equation

1. Introduction

The general objective of this work which was primarily motivated by the oil industry, is to
describe the ¯ow of two-component mixtures through porous media when phase changes
occur. When pressure goes down, two typical evolutions may happen, which are liquid
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Fig. 1. Liquid vaporization in a three-dimensional porous medium. (a) View of the reservoir at the large scale; (b)
the porous medium at the pore scale.
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vaporization (LV) and retrograde condensation (RC); these two cases will be denoted by their
initials LV and RC; LV is tentatively illustrated in Fig. 1. The mixture is characterized by its
pressure, temperature and composition at the origin x � 0, representing the conditions in an oil
reservoir. The ¯ow is characterized by the global mass ¯ux Q. The mixture in the reservoir
may be in the form of either one- (liquid or vapor) or two-phase. Besides, pressure variations
due to the ¯ow may induce condensation or vaporization and composition changes. One
wishes to predict, as functions of the mass ¯ux and of the reservoir conditions, the longitudinal
pro®les of the various quantities of interest and particularly of the pressure, gas/liquid
saturation and mixture composition.
This important topic has received some attention in the literature, but with di�erent points

of view. First, detailed thermodynamic properties are known and used for the analysis of static
properties (Reid et al., 1987; Gravier, 1986); moreover, theoretical analyses of dynamic
properties of mixtures have been developed (Atkin and Craine, 1976a, 1976b), but without any
application to real cases. The closest ®eld to the present study is foamy oil which has been
recently reviewed by Sheng et al. (1999) in the special issue Hayes and Maini (1999). There are
a number of recent works, both theoretical and experimental. Some of them focus on the
aspects such as nucleation which are physically important, but are not within the main scope
of this work. Li and Yortsos (1995) and Du and Yortsos (1999) studied capillary networks,
both experimentally and numerically. In a slightly di�erent study, El Yous® et al. (1991)
observed bubble formation during pressure decline in a transparent micromodel, but there is
no global ¯ow motion in this experiment. In our case, as in Geilikman and Dusseaut (1999),
the pressure variations are induced by the ¯ow itself.
The major purpose of this work is to determine the macroscopic evolution at the reservoir

scale L of a binary mixture at a given mass ¯ow rate based on a microscopic description of
what is going on at the pore scale l. It is assumed that l is much smaller than L. It should be
noted that the components, pressure and temperature conditions are chosen in order to be
representative of a typical oil reservoir.
Two additional fundamental hypotheses are necessary. First, the longitudinal variations of

all the quantities take place over distances L, much larger than the characteristic pore size l
and much smaller than the reservoir length L; to summarize

l�L� L �1�
Second, because of the local motions and of di�usion, each phase is assumed to be well mixed
and the concentration of a given component is constant in a given phase at the local scale 1;
we shall describe this second assumption in Section 2.4.
This paper is organized as follows. In Section 2, after some notational de®nitions, the

thermodynamics of a multiphase, multicomponent mixture are given in detail; the
determination of material properties such as viscosities and surface tension is schematized. The
motion of each phase is computed with a classical Immiscible Lattice Boltzmann (ILB) code,
which was originated by Gustensen (1992) and applied by Ginzbourg and Adler (1995).
Finally, realistic samples of porous media can be obtained by the technique of reconstructed
media (Adler et al., 1990) which is brie¯y recalled.
Section 3 provides some numerical informations on the actual implementation of the general

code. The algorithmic structure of the ILB code is ®rst presented. Then the Flash code is
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introduced; based on the thermodynamic properties, it determines the liquid saturation when
temperature, pressure and composition of the mixture are known; by the same token, the
partition coe�cients and the necessary physical properties are also calculated. Finally, the
general algorithm which combines all the previous ingredients as subroutines, is explained in
detail; it predicts all the characteristics of the ¯ow for a given saturation.
Due to the complex structure of this algorithm, it was necessary to check it against results

obtained by independent means in a simple con®guration. This is done in Section 4 for a plane
Poiseuille ¯ow where the velocity pro®le is simply a combination of parabolic pro®les. The
agreement between various versions of the code is generally excellent both for LV and RC.
Section 5 is devoted to the study of several di�erent con®gurations. One started with two-

dimensional structures where the evolution of the phase distribution can be easily graped. A
periodic constriction provides a good example to the analysis of the in¯uence of the location of
nucleation in the evolution of such mixtures; it will be seen that especially for RC, this
in¯uence is drastic. Then the magnitude of the global mass ¯ow rate is varied and analysed for
a two-dimensional network; when ¯ow is large, the gas phase is seen to break through the
whole network, pushing the liquid phase in the transversal channels where the velocities are
small. Finally, reconstructed media are addressed; because of the uneasy visualisation, results
are only discussed by means of macroscopic quantities; relative permeabilities are also
systematically computed at various stages of the evolution; the in¯uence of the total mass ¯ow
rate is clearly seen on these overall results and liquid permeability is considerably diminished
when mass ¯ow rate is increased; this con®rms the visual ®ndings obtained for two-
dimensional networks. For RC permeabilities are found to go along hysteresis cycles.
Some remarks are presented in Section 6, and some extensions of the present work are

proposed.

2. General

In this section, a few notations are introduced ®rst. Then the thermodynamic properties and
the constitutive equations are presented. The algorithm of the ILB code is summarized.
Finally, the technique of reconstructed media is presented.

2.1. Notations

Apart from the pressure P and the temperature T, a two-phase two-component mixture is
characterised by its composition. As a general rule, quantities associated with a component or
with a phase are denoted by a subscript �a � 1 or 2) or a superscript �b � L or V, for liquid or
vapor), respectively. Accordingly, za denotes the global molar fraction of component a, Xa or
XL

a the mole fraction of component a in the liquid, Ya or XV
a , the mole fraction of component a

in the vapor. The partition coe�cient Ka is de®ned as the ratio at equilibrium

Ka � Ya=Xa �2�
Each component is also characterised by its molar mass Ma, and its molar volume within each
phase Vb

a: The number of moles of component a in phase b is denoted by Nb
a: In addition,
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Nb � Nb
1 �Nb

2

Na � NL
a �NV

a

N � NL �NV �3�
It may be shown that for any a

NL

N
� Ya ÿ za

Ya ÿ Xa

NV

N
� za ÿ Xa

Ya ÿ Xa

NV

NL
� za ÿ Xa

Ya ÿ za
�4�

The de®nitions above are true for any number of components, without impairing Eq. (4).
However, for binary mixtures, it can be deduced from Eqs. (2) and (4) that

X1 � 1ÿ K2

K1 ÿ K2
X2 � K1 ÿ 1

K1 ÿ K2

Y1 � K1
1ÿ K2

K1 ÿ K2
Y2 � K2

K1 ÿ 1

K1 ÿ K2
�5�

Note that, the condition 0RXb
aR1 implies

K1R1RK2 or K2R1RK1 �6�
Moreover, Eqs. (4) and (5) imply that

NL

NV
� K1K2

�
z1
K1
� z2

K2

�
ÿ 1

�z1K1 � z2K2� ÿ 1
�7�

In order to write the transport equations, which result from mass and momentum balances,
introduce the densities of each component within each phase

rba �Ma=V
b
a �8�

and the phase densities

rb � rb1 � rb2 �9�
Finally, let us introduce a few dynamical quantities. The phase viscosities are denoted by mb;

the viscosity ratio m is de®ned as

m � mV

mL
�10�

The mass ¯uxes are denoted in the following way. Q, Qb and qa are the global mass ¯ux, the
mass ¯ux per phase and the mass ¯ux per component, respectively. The partial mass ¯uxes qa
are de®ned as
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qa � qa
q1 � q2

�11�

2.2. Thermodynamical equations

2.2.1. Equation of state
In the vapor phase, the pressure PV, temperature T V and molar volume V V are related by

an equation of state, which accounts for the non-ideality of the gas, via its compressibility
factor Z

Z � PVV V

RT V
�12�

where R is the perfect gas constant (8314 J/mol/K). Among the numerous models proposed in
the literature (cf. Atkin and Craine, 1976a, 1976b; Reid et al., 1987), one of the most successful
is the Peng±Robinson equation, which belongs to the class of ``cubic equations of state''. For a
single component gas, it can be cast into

PV � RT V

V V ÿ b
ÿ a

V V�V V ÿ b� � b�V V ÿ b� �13a�

or equivalently,

Z 3 ÿ �1ÿ B�Z 2 � �Aÿ 3B 2 ÿ 2B�Z�
ÿ
B 2 ÿ AB� B3

�
� 0 �13b�

where

A � aP

�RT�2
B � bP

RT

a � a0R
2O2 b � b0MR

O2 �
�
1� fo

ÿ
1ÿ �����������

T=Tc

p ��2
T2

c

Pc

M � Tc

Pc

�14�

Pc and Tc are the critical pressure and temperature of the gas, o is the acentric factor, and the
constants are ®tted to match experimental data. For hydrocarbons (see Reid et al., 1987;
Section 3.6),

a0 � 0:45724

b0 � 0:07780

fo � 0:37464� 1:54226oÿ 0:26992o2 �15�
For binary gas mixtures, the Peng±Robinson equation of state, Eqs. (13a) and (13b), are
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supposed to apply. However, the coe�cients A and B are now de®ned by a mixing rule (Reid
et al., 1987; Section 8.12)

A � aP

�RT�2
B � Pb

RT

a �
X2
a�1

X2
a 0�1

YaYa 0 �1ÿ Caa 0 � ����������
aaaa 0
p

b �
X2
a�1

Yaba �16�

where aa and ba are de®ned by Eq. (14) for the component a; Ya is the molar fraction of
component a, and Caa 0 is a binary interaction parameter. For mixtures of hydrocarbons, Caa 0 is
usually taken as zero (Gravier, 1986).

2.2.2. Equilibrium conditions between liquid and vapor phases
The equilibrium at the interface is ruled by the condition of equality of the chemical

potentials mba in both phases for the two components; they can be expressed in term of the
fugacities fba , with respect to a reference state (subscript 0)

mba � mba0 � RT ln
fba

fba0
�17�

The fugacity coe�cient Fb
a is de®ned by

fba � Fb
aX

b
aPa �18�

Hence, the equilibrium condition becomes

Ya

Xa
� FL

aP
L

FV
aP

V
� Ka �19�

Note that if the interface curvature is ignored, PL � PV:
The partition coe�cients Ka depend upon pressure, temperature, and composition of the

mixture. They can be evaluated by introducing the equation of state into the general expression
of the fugacity coe�cient (Reid et al., 1987; Section 8.12)

RT b ln Fb
a �

�1
V b

24 @Pb

@nba

!
T bVn 0ab

ÿRT
b

V

35dVÿ RT b ln Z b �20�

Recall that Z is the compressibility factor, Eq. (12). If a cubic equation of state is used in Eq.
(20), the explicit expression for the fugacity coe�cient becomes (see Reid et al., 1987;
Table 5.13)

ln Fb
a �

ba
bb
�Z b ÿ 1� ÿ ln�Z b ÿ Bb�
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� Ab

Bb
�����������������
u2 ÿ 4w
p

�
ba
bb
ÿ dba

�
ln
2Z b � Bb

ÿ
u�

�����������������
u2 ÿ 4w
p �

2Z b � Bb
ÿ
uÿ

�����������������
u2 ÿ 4w
p � �21�

For the speci®c case of the Peng±Robinson equation, with zero interaction coe�cients,

u � 2 w � ÿ1 ba
bb
� Tca=PcaX

a

Xb
aTca=Pca

dba � 2

������
aba
bb

s
�22�

The partition coe�cients Ka can be obtained from the combination of Eqs. (19) and (21).

2.2.3. Other constitutive equations: viscosities and surface tension

2.2.3.1. Liquid mixture viscosity. The viscosity mL
m of the liquid phase is obtained by the mixing

rule of Teja and Rice (Reid et al., 1987; Section 9.13). It involves the critical coe�cients of
each component, and their viscosities in some reference state. These were evaluated by Letsou
and Stiel model (Reid et al., 1987; Section 9.12) which again makes use only of universal con-
stants and of the critical temperatures.
These formulae can be summarized as follows. The viscosity of the liquid mixture is given by

ln
ÿ
mL

mem

� � ln
ÿ
mLe

��r1��hlnÿmLe
��r2�ÿln

ÿ
mLe

��r1�i om ÿ o�r1�

o�r2� ÿ o�r1�
�23�

where the superscripts (r1) and (r2) refer to two reference ¯uids. mL is the viscosity, o is the
acentric factor and e is a parameter de®ned as

e � V
2
3
c

�TcM�
1
2

�24�

Composition is introduced in the de®nitions of om, Vcm, Tcm and Mm: The rules to compute
these mixtures parameters are

Vcm �
X
a

X
g

XaXgVcag Tcm �

X
a

X
g

XaXgTcagVcag

Vcm

Mm �
X
a

XaMa

om �
X
a

Xaoa Vcag �

�
V

1
3
ca � V

1
3
cg

�
8

TcagVcag � cag
ÿ
TcaTcgVcaVcg

�1
2

�25�

where cag is an interaction parameter of order unity which must be found from experimental
data.
It is important to note that in Eq. (23) the viscosity values m�r1� and m�r2� for the two
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reference ¯uids are to be obtained at temperatures T�T�r1�c =Tcm� and T�T�r2�c =Tcm�, respectively; T
is the temperature of the mixture.
As the reference ¯uids (r1) and (r2) may be chosen as di�erent from the actual components

in the mixture, it is normally advantageous to select them from the principal components in
the mixture. Letsou and Stiel (Reid et al., 1987; Section 9.12) proposed for saturated liquids

mSLx �
ÿ
mLx

��0��oÿmLx
��1� �26�

where the parameters �mLx��0� and �mLx��1� are functions only of reduced temperature and xÿ
mLx

��0�� 10ÿ3
ÿ
2:648ÿ 3:725Tr � 1:309T2

r

�
ÿ
mLx

��1�� 10ÿ3
ÿ
7:425ÿ 13:39Tr � 5:933T2

r

� �27�
The units have been converted to yield mSL in centipoises even though x has the dimensions of
micropoises

x � 0:176

�
Tc

M3P4
c

�1
6 �28�

2.2.3.2. Gas mixture viscosity. The viscosity mV of the vapor phase is evaluated using Lucas
method, adapted for gas mixtures (Reid et al., 1987; Section 9.7). It is a rather complex model,
but unlike many others it does not require to provide estimates of the low-pressure, viscosity
or any additional quantity attached to the components. It makes use only of a few universal
numerical constants and of the critical temperature and pressures of the species which are
given in Table 1.
For the reduced temperature of interest, calculate a parameter Z1

Z1 �
�
0:807 T0:618

r ÿ 0:357 exp� ÿ 0:449 Tr � � 0:340 exp� ÿ 4:058 Tr � � 0:018
�

Z2 �
"
1� aPe

r

bP f
r �

ÿ
1� cPd

r

�ÿ1#Z1

Table 1
Some thermodynamic coe�cients for the various components of practical interest (cf. Reid et al., 1987)

Component i [Pi] M (g/mol) s (AÊ ) e=K Vc (cm3/mol)

CO2 78.0 44.01 3.941 195.2 94.16
C1 77.0 16.04 3.758 148.6 98.99
N2 41.0 28.013 3.798 71.4 90.20
C3 150.3 99.097 5.118 237.1 202.85

C5 225.0 72.151 5.784 341.1 305.92
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a � a1
Tr

exp a2T
g
r b � a�b1Tr ÿ b2� c � c1

Tr

exp c2T
d
r

d � d1
Tr

exp d2T
e
r e � 1:3088 f � f1exp f2Trx

a1 � 1:245� 10ÿ3 a2 � 5:1726 g � ÿ0:3286
b1 � 1:6553 b2 � 1:2723
c1 � 0:4489 c2 � 3:0578 d � ÿ37:7332
d1 � 1:7368 d2 � 2:2310 e � ÿ7:6351
f1 � 0:9425 f2 � ÿ0:1853 z � 0:4489

�29�

Finally, the dense gas viscosity is calculated as

mV � Z2

x
�30�

2.2.3.3. Surface tension. The surface tension s, which is required in complex geometries, is esti-
mated using McLeod±Sugden correlation (Reid et al., 1987; Section 12.5). It makes use of the
so-called parachor coe�cients for each component, which have to be provided

s
1
4 �

Xn
a�1
�Pa �

�
Xa

V L
ÿ Ya

V G

�
�31�

where �Pa� is the parachor of component a: This coe�cient is given in Table 1.

2.3. Reconstructed media
First, let us brie¯y describe the typical measurements which are fully reported by Adler et al.

(1990). Consider the thin section displayed in Fig. 2(a). At each point x within the sample, one
can de®ne a phase function Z�x�

Z�x� �
�
1 if x belongs to the pore space

0 otherwise
: �32a�

Z�x� can be determined by image analysis and stored as a numerical ®le. Then, the porosity is
computed according to

e � Z�x� �32b�
The other important quantity is the second moment of the phase function which is also

called the correlation function

RZ�u� �
�
Z�x� ÿ e

� � �Z�x� u� ÿ e
�
=�eÿ e2� �32c�

where u � kuk:
These measurements are usually performed in a single, but otherwise arbitrary, plane since

most materials are isotropic at the small scale. An example of such a correlation function is
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Fig. 2. Reconstruction of three-dimensional porous media. (a) Binarized thin section of dimensions 12:2� 12:2 mm2.
The porosity is equal to 0.157. (b) The correlation function as a function of the lag u; the solid line corresponds to
the experimental data and `w' corresponds to the reconstructed sample. (c) The reconstructed piece of porous

medium with the measured porosity and the measured correlation function; the solid phase is grey.
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displayed in Fig. 2(b). Porous media with the same experimental porosity and correlation
function can be generated by a statistical procedure which is given in detail in Adler et al.
(1990).
For practical purposes only, the porous medium is constructed in a discrete manner. It is

considered as being composed of N3
c small cubes, each of the same size a. These elementary

cubes are ®lled either with liquid, or with solid. An additional condition is imposed by the fact
that the sample of generated porous medium has a ®nite size Nca: In such a case, it is standard
to consider periodic boundary conditions on the sample for the determination of permeability
(cf. Adler et al., 1990). The same requirement should be imposed on the generation of the
medium itself. An example is displayed in Fig. 2(c).
It might be useful to relate the size of the unit cell to the scales which were introduced by

Eq. (1). Nca is assumed to be large with respect to the pore scale l, so that the sample is
representative of the porous medium. However, Nca is supposed to be small with respect to L

l� Nca �33a�

2.4. Transport equations: the lattice Boltzmann model
All the ¯uid properties, namely composition, viscosity and density, are assumed to be

constant in each phase at the local scale; the phase properties can be calculated at
thermodynamic equilibrium. This is ful®lled when two assumptions are veri®ed. First, the size
of the unit cell is supposed to be small with respect to L, the length scale over which
signi®cant changes occur. To summarize,

Nca << L �33b�
Second, because of di�usive and convective e�ects, the phases are supposed to be well mixed at
the pore level. Note that more generally, conditions (33a) and (33b) hold for all the spatially
periodic media that are going to be studied.
The transport equations reduce to the global mass and momentum balances. They can be

written in the form of Navier±Stokes equations. However, because of the multiphase character
of the ¯ow, the ILB algorithm is used.
During the last few years, numerous models based on single phase Lattice Gas (LG) and

Lattice Boltzmann (LB) models have been developed. They originated in the FHP two-
dimensional LG automaton introduced by Frisch et al. (1986, 1987) and in the FCHC four-
dimensional LG developed by D'HumieÁ res et al. (1986) for simulations in three-dimensions.
The assumption of molecular chaos is made in LB models suggested by McNamara and
Zanetti (1988) and developed by Higuera and Jimenez (1989). Incompressible Navier±Stokes
equations are recovered by both approaches in an asymptotic limit.
Some of these single phase methods have been extended to simulate the behaviour of two or

more immiscible ¯uids. ILB multiphase models are developed on the basis of the single phase
LB models and ILG models; they consist of Boltzmann equations supplemented by
perturbation of populations near the interface in order to introduce surface tension; the
separation of phases is performed in the same manner as in ILG models.
Let us brie¯y present the two immiscible two-phase three-dimensional models with rest
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populations which are going to be used. The interface is de®ned as the set of nodes where
the two phases are simultaneously present. The ®rst model does not provide any new
procedure, since it was already developed by Gustensen (1992), but the possibility to have
di�erent viscosities as well as di�erent numbers of rest populations is formally incorporated
into it; at the interface where both populations are present, the collision matrix is chosen by
the majority rule. Hence, the choice of the collision matrix is ambiguous at the nodes where
the red mass is equal to the blue one. The second model is the same in bulk, but a special
collision matrix is introduced at the interface in order to satisfy the standard interfacial
conditions at ®rst order.
We have not used the more sophisticated version of Appert and Zaleski (1990) because it

would have necessitated a much more sophisticated version which would have been a study in
itself. Moreover, the equation of state is not as ¯exible as we wished. Hence, we choose this
intermediate situation.
The algorithm which corresponds to these models is detailed in Section 3.

3. Numerical algorithms

3.1. Lattice Boltzmann code
This algorithm is essentially the same as the one described in Ginzbourg and Adler (1995) to

which the reader is referred for further details.
Let the populations of red or blue phase of velocity Ci be NR

i �r, t� or NB
i �r, t�,

�i � 0, . . . ,bm � 24�, respectively. The index 0 corresponds to rest of the populations; the
numbers of rest populations are LR or LB for red or blue phase, respectively; the moving
populations may have bm � 24 velocities Ci in the FCHC model. The algorithm consists of the
following ®ve steps.

Step 1 (De®nition of the ®elds at time t).
1.1. Calculation of the densities of each phase rR, rB

rK�r, t� �
X24
i�0

NK�r, t�WK
i , W

K
0 � LK, WK

i � 1, i, . . . ,24 for K � R, B �34a�

1.2. Calculation of the total population Ni and of the total density

Ni�r, t�Wi � NR
i W

R
i �NB

i �r, t�WB
i , i � 0, . . . ,24

W0 � L,WK
i � 1, i � 1, . . . ,24

r�r, t� � rR�r, t� � rB�r, t� �34b�
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1.3. Addition of external forces FR and FB according to the single phase algorithm of Succi et
al. (1989) (expressions for these forces will be given at the end of this subsection)

N 0i �r, t� � Ni�r, t� � dNF
i �r, t�; dNF

i �r, t� �
D

c2bm

r�r, t�ÿF�r, t� � Ci

�
, D � 4, 8i

c2 � �Ci � Ci� �FCHC
2,

�34c�

where the expression of F�r, t� depends upon the chosen model:

. Model 1: by majority of colors

F�r, t� � FR, rB�r, t� < rR�r, t�

FB, rB�r, t� > rR�r, t� �34d�
. Model 2:

F�r, t� � FRrR�r, t� � FBrB�r, t�
r�r, t� �34e�

1.4. Calculation of the total velocity u

u�r, t� �

X24
i�1

N 0i �r, t�Ci

r�r, t� ÿ 1

2
F�r, t� �34f�

Addition of fÿ1
2Fg to the classical velocity expression is caused by the presence of the term

NF
i �r, t� given by Eq. (34c) in LB equation. De®ned in such a manner, the velocity u�r, t�

corresponds to the local velocity in the equilibrium solutions for populations and,
consequently, to the macroscopic velocity of the simulated ¯uid.

Step 2 (Collision of total populations).

N�i �r, t� � N 0i �r, t� �
X24
j�0

AijN
neq
j �r, t�Wj, i � 0, . . . ,24

N
neq
i � N 0i ÿN

eq
i ; W0 � L, Wi � 1, i � 1, . . . ,24, �35a�

where the equilibrium solution Neq is known. The collision operator A�r, t� and the number
of rest populations L�r, t� are di�erent in Models 1 and 2; the coe�cients of the collision
matrices are related to the physical properties of the ¯uids as it is summarized in
Ginzbourg and Adler (1995). In the algorithm described in Section 3.4, these coe�cients
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are updated in order to take into account the changes in the physical properties of the
¯uids.

Model 1

L �
�
LR, rR�r, t� > rB�r, t�,
LB, rR�r, t� < rB�r, t�;

Aij �
8<:AR

ij , rR�r, t� > rB�r, t�,
AB

ij , rR�r, t� < rB�r, t�;
�35b�

Model 2

L �
8<:LR, rB�r, t� � 0,
Lint, rR�r, t�6�0, rB�r, t�6�0,
LB, rR�r, t� � 0;

Aij �

8>>><>>>:
AR

ij , rB�r, t� � 0,

Aint
ij , rR�r, t�6�0, rB�r, t�6�0,

AB
ij , rR�r, t� � 0;

�35c�

The condition of mass conservation imposed on the matrix A can be expressed by

X24
j�0

AijWj � 0, W0 � L, Wi � 1, i � 1, . . . ,24 �35d�

Consequently, when the matrix A�r, tÿ 1� has to be replaced by some di�erent matrix
A�r, t�, the value of rest population N 00�r, t� has to be recalculated before collision in order to
conserve mass during the collision, if the numbers of rest populations associated with these
matrices are di�erent

N 00�r, t� �
N0�r, t�L�r,tÿ 1�

L�r, t� : �35e�

Each kinematic viscosity nK is de®ned by the eigenvalue lK
c of the corresponding collision

matrix

nK � ÿ c2

D� 2

 
1

2
� 1

lK
c

!
for K � R, B �35f�

Step 3 (Surface tension). A perturbation dNi�r, t� of the populations creates surface tension
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N 00i �r, t� � N�i �r, t� � dNi�r, t� �36a�

dNi�r, t� � C per

 
�Ci � f �2
�f � f �2

ÿ 1

2

!

where C per is some function of f�r, t�; C per�r, t� decreases when the distance from the interface
increases. A standard form for C per�r, t� has been given by Gustensen (1992)

C per�r, t� � Aperjf�r, t�j �36b�
where Aper is an arbitrary constant. The local color gradient f�r, t� is de®ned by

f�r, t� �
X24
i�1

Ci

�
rR�r� Ci, t� ÿ rB�r� Ci, t�

� �36c�

Step 4 (Recoloring). The total population is recolored in order to separate the populations
N 00i R and N 00i B before subsequent propagation; N 00i R�r, t� is set equal to a value which
maximises the function u�NR

i �

u
ÿ
NR

i

� �X24
i�1

NR
i Ci � f�r, t� �37a�

together with the constraints

X24
i�0

NR
i W

R
i � rR�r, t� �37b�

0RNR
i W

R
i RN 00i �r, t�Wi�r, t� �37c�

In order to conserve the total momentum in a site, N 00i B�r, t� is given by

N 00i BWB
i � N 00i Wi ÿN 00i RWR

i i � 0, . . . ,24 �37d�

Step 5 (Propagation).

NK
i �r� Ci, t� 1�WK

i � N 00i K�r, t�WK
i , i � 0, . . . ,24 for K � R, B �38�

Then the iteration procedure 1±5 is repeated.
It might be the right place to give the expression of the force F in Eq. (34); consider a Stokes

¯ow in a periodic medium; it was shown in Adler (1992) that the driving force can be taken as
an external macroscopic pressure drop rp: The velocity ®eld Æu is periodic and the pressure can
be decomposed into a periodic �p�r� and a linear component

p�r� � �p�r� � r � rp
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When this decomposition is introduced into the Stokes equation, one obtains

mr 2 �u � r �p�rp, r � �u � 0

Hence, the macroscopic pressure gradient acts as an external body force. This can be easily
generalized for two-phase ¯ow, and this corresponds to the inclusion of a body force, which is
equal for each phase.

3.2. Flash problem

As discussed in Section 2.4, thermodynamic equilibrium exists at the local scale.
The determination of the phase volume fractions and compositions given the pressure P,

temperature T and global composition characterised by z1 of a mixture is a task to be
performed repeatedly in the simulations. It is commonly called the ¯ash problem (Reid et al.,
1987; Section 8.12). Explicitly, one has to determine the molar fractions in both phases which
satisfy the equilibrium condition (17) at the liquid/vapor interface. This means solving the set
of two strongly non-linear equations

K1FV
1 � FL

1 �39�

K2FV
2 � FL

2

where the fugacity coe�cients Fb
a are given by Eq. (21). This can only be done by an iterative

procedure. The general scheme of the method is the following:

1. Start with initial guesses for the partition coe�cients K1 and K2: The liquid mole fraction
L � NL=N and the component mole fractions Xb

a can be deduced from Eqs. (4) and (5).
2. Determine the corresponding compressibility factors Z L and Z V in both phases by solving

the Peng±Robinson Eq. (13a) and (13b) with Eqs. (14) and (15).
3. Calculate the fugacity coe�cients Fb

a by Eq. (21) and deduce the new partition coe�cients
from Eq. (19)

Ka � FL
a=F

V
a �40�

4. Determine new values of the mole fractions Xb
a from L and Ka, using Eq. (4)

Xa � za
Ka � L�1ÿ Ka� Ya � KaXa �41�

5. Evaluate
P

a�Xa ÿ Ya�, which should be equal to zero when the solution is reached.
6. Adjust the liquid mole fraction L according to

Lnew � Lÿ

X
a

�
za�Ka ÿ 1��=�Ka � L�1ÿ Ka�

�
X
a

�
za�Ka ÿ 1�2

�
=
�
Ka � L�1ÿ Ka�

�2 �42�
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7. Go back to step 2.

The iterative procedure stops when the error in step 5 falls below a prescribed tolerance.
Values of L below 0 or above 1 denote a single phase state, vapor or liquid, respectively.
This resolution scheme is stable provided that the initial guesses for the partition coe�cients

in step 1 are close enough to the solution. This is easily achieved if the ¯ash problem has
previously been solved under slightly di�erent �P, z1� conditions, as it often happens in the
study of the mixture evolution along the ¯ow. However, such hints are not available for the
very ®rst resolution. If the mixture is single-phase, a gross estimate of Ka is su�cient. For the
numerical applications in this study, a couple of values slightly apart from one (e.g. 0.9 and
1.1) were found satisfactory. In other cases, a few trials should easily yield convenient values.
If the mixture consists of two phases, sharper guesses for the Ka are required. We used the
following method. Suppose that the ¯ash problem is to be solved for �P, z1�: We simulate the
¯ow of a mixture with composition z1 at P0 > P: P0 is set high enough so that the mixture is
single-phase and rough estimates of Ka are su�cient. For the pressure P, we obtain the
partition coe�cients corresponding to a composition z 01, not too di�erent from z1, which can
be used as initial guess for the actual problem.
Once the mixture composition is known, the various parameters of interest and physical

coe�cients can be obtained from the equations in Section 2.2

3.3. General algorithm

The calculations of the evolution of the ¯ow through the porous medium can be made as
follows. They consist of the following steps which are schematized in Fig. 3. The temperature
is assumed to be uniform and equal to its initial value T throughout the reservoir; the mixture
consists of only two components.

3.3.1. Reservoir and single phase region
One starts from known initial conditions in the reservoir with pressure P, global molar

fraction z18 of component 1 (or for sake of brevity composition), global mass ¯ux Q0: The
mass ¯ow rate of each component is also known and constant

q1 � q10 q2 � q20 �43�

It is assumed that the reservoir conditions correspond to a single phase situation; when this
is not true, the algorithm is started at the beginning of loop 1. The ¯ow of a single phase is
easily determined by some single phase code and one derives the pressure gradient for the
global mass ¯ux which is known. Hence, since in single phase ¯ow the composition does not
change, one can determine the pressure P1 for which the double phase regime starts. The
corresponding abscissa x1 is calculated with the pressure gradient. All the related physical
properties are obtained for this pressure.
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Fig. 3. General algorithm.

S. BeÂkri et al. / International Journal of Multiphase Flow 27 (2001) 477±526 495



3.3.2. Evolution of the two-phase ¯ow along x

3.3.2.1. Beginning of loop 1. The nature of the problem now changes completely when two-
phase ¯ow occurs. Let i be the index of loop 1 which corresponds to the saturation steps which
are going to be imposed to the mixture. At the beginning of loop 1, this index is equal to 1.
Generally speaking, consider that this index has the value i. All the relevant quantities are

supposed to be known; at point xi, the pressure Pi, the composition z1, i, the saturation SL, i

and the pressure gradient rPi are known. These quantities are well de®ned because of the
assumption of local equilibrium, as imposed by Eqs. (1), (33a) and (33b) and as discussed in
Section 2.4. Now assume that a variation of the saturation is imposed at the intermediate scale
L

SL, i�1 � SL, i � dSL �44�

where dSL is a given variation which can be changed. One wants to determine the new values
xi�1, Pi�1, z1, i�1, and rPi�1 for which this new saturation is obtained. Note that dSL can be
either positive or negative and that its sign may change along a given path in retrograde
condensation.
A phase distribution inside the pore space has also to be determined. Two di�erent

situations may exist. If it is the ®rst time that one enters loop 1 (i.e. i � 1), the new phase is
arbitrarily distributed; some examples of this arbitrary character will be given in Section 5.1. If
i > 1, the new phase distribution is obtained by peeling one of the existing phases according to
the sign of dSL:
This peeling process can be described as follows. The layer located at the interface between

the two phases is changed into the phase which is getting larger as indicated by the sign of
dSL; moreover, the number of modi®ed populations correspond to the magnitude of dSL:

3.3.2.2. Loop 2. In order to determine the set of values fxi�1, Pi�1, z1; i�1, rPi�1g, a new iter-
ation loop is started which is denoted as loop 2 in Fig. 3. This loop 2 is located inside loop 1.
The major variable of this loop is the composition z1: Let z

0
1 is a new value of z1:

First the lattice Boltzmann code is used in order to determine the pressure gradient rPi�1
for which the overall mass ¯ow rate is equal to its constant value Q0: The physical properties
of the two phases are calculated according to the prevailing conditions; the coe�cients of the
collision matrix Eqs. (35a)±(35f) are modi®ed accordingly. The ¯ow rates are of course time-
averaged in order to be meaningful; when these averages are stabilized, a new phase
distribution is obtained.
Second, the ¯ash program is called and a new value z 001 of z1 is determined in such a way

that for the new saturation SL, i�1, the mass ¯ow rates of each component are equal to the
initial mass ¯ow rates q1o and q2o:
Third, the two values z 01 and z 001 are compared. If the di�erence is too large, loop 2 is started

again with z 01 � z 001 and updated physical properties. This criterion is precisely stated as

jz 001 ÿ z 01j < Zz 001 �45�
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At this point loop 2 is completed; saturation and composition are known; pressure can be
deduced by again using the ¯ash program.

3.3.2.3. End of loop 1
We also know the new pressure gradient rPi�1 because of the lattice Boltzmann program.

Hence, the new abscissa inside the reservoir can be determined by using the following formula

xi�1 � xi � 2
Pi ÿ Pi�1
rPi � rPi�1

�46�

Hence, all the new values are determined and loop 1 can be started again with a new variation
of the saturation.
These calculations can be continued until the end of the two-phase ¯ow region.

3.4. Final single phase region

The single phase calculations are started again. Note that the composition of the single
phase ¯uid is necessarily identical to the initial composition. The calculations can be continued
until the end of the reservoir.

3.5. General conditions

In this paragraph, the general conditions under which we are working, are given in detail;
they will be valid for most of the rest of this paper.
Due to the applications which motivated this study, the temperature is chosen equal to 100F

or 37.88C; since the ¯ow rates are rather small, the temperature is assumed to be constant
throughout the reservoir. The pressure P0 in the reservoir is equal to 91 bars. Also a methane/
propane mixture is always used; component a � 1 is methane. Under these circumstances, the
liquid saturation as a function of the pressure and of the global mole fraction z1 of methane is
displayed in Fig. 4.
Two initial compositions have been chosen. z18 � 0:5 yields a monotonous liquid to gas

evolution, while z18 � 0:6 displays a zone where retrograde condensation occurs.
A last general feature was found useful. Instead of giving the distances in meters, it turned

out to be more convenient to use a reduced distance x̂ whose dimension is equal to pressure
(Pascal)

x̂ � m0
K

Q0

r0
x �47a�

where K is the permeability of the porous medium. m0 and r0 are evaluated at the reservoir
conditions �T0 � 37:88C, P0 � 91 bars). The origin of the x-axis is located at the reservoir.
The major physical properties are given in Table 2, together with the viscosity ratio m (cf.

Eq. (10)) and the capillary number
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Fig. 4. The liquid saturation SL for a methane/propane mixture at T � 37:88C (100F) as a function of pressure P

and global mole fraction z1 of methane. P varies from 13 to 90 bar in 1 bar steps, and z1 from 0.05 to 0.9 in 0.025
steps.

Table 2

Physical properties at the reservoir conditions and at the dew pointa

Initial global molar
fraction of methane

At the reservoir
conditions

At the dew point

Liquid±gas transition
z18 � 0:5

mL � 2:1� 10ÿ5,
rL
0 � 282:2 kg/m3,

T � 37:88C

P � 88:3� 105,
mL � 2:113� 10ÿ5,
mV � 2:595� 10ÿ5,
m � 1:23, s0 � 1:45� 10ÿ5,
rL
0 � 227:4 kg/m3,

Ca � 0:52� 10ÿ2Q0

Retrograde condensation
z18 � 0:6

mV � 1:9� 10ÿ5,
rV
0 � 198:5 kg/m3,

T � 37:88C

P � 90:18� 105,
mL � 1:2� 10ÿ5,
mV � 1:87� 10ÿ5,
pm � 1:56,
s0 � 2:61� 10ÿ6,
rV
0 � 195:1 kg/m3,

Ca � 3:7� 10ÿ2Q0

a All the quantities are given in SI units; for instance, the global mass ¯ux is expressed in kg/m2 s.
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Ca � mu
s
� mQ0

sr0
�47b�

The velocity has been replaced by the total mass ¯ow rate Q0 which varies from case to case.
The capillary number is given at the dew point in Table 2; it is relative to the single phase
which exists in the reservoir; hence, for LV and RC, the density and the viscosity are relative
to liquid and vapor, respectively.
Note that the range of values of the capillary numbers is deliberately very large; it does not

really matter for the constriction and the two-dimensional network which correspond to
theoretical situations. This is likely to be more important in the reconstructed medium;
calculations would have been possible, but exceedingly slow.

4. Application to plane Poiseuille ¯ow and veri®cations

The major purpose of this section is to make sure that the general code compares well with
the results which can be derived in a semi-analytical way for the Poiseuille ¯ow. In Section 4.1,

Fig. 5. Plane Poiseuille ¯ow. (a) Asymmetric and (b) symmetric multiphase con®gurations.
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the semi-analytical solution based on parabolic pro®les will be detailed. In Section 4.2, a long
series of tests will be described and the corresponding evolutions will be compared to the ones
obtained with the code presented in the previous section.

4.1. Semi-analytical calculation for plane Poiseuille ¯ow

The physical situation is depicted in Fig. 5(a). A plane channel of width H is partially ®lled
by a height h of liquid; note that this ®lling is made in an asymmetric way. De®ne

~h � h

H
�48�

In agreement with our general assumption of slow variations at the local scale which is
discussed in Section 2.4, the ¯ow is almost established with slow variations of h, so that the
velocity pro®le in each phase is parabolic. They are expressed by

uV � ÿH 2

2mV

�
1ÿ ~y

�"
~yÿ ~h� m ~h

m ~h� 1ÿ ~h

#
dP

dx

uL � ÿH
2

2mL
~y

"
~hÿ ~y� 1ÿ ~h

m ~h� 1ÿ ~h

#
dP

dx
�49�

Under stationary conditions, the mass ¯uxes q1 and q2 of both components have to remain
constant through all the cross-sections of the channel. These two ¯uxes can be calculated
analytically given �P, z1� (and thus the mixture composition) by a straightforward integration
of Eq. (49)

qa � ÿ H 2

12A2
0

 
rL
aA

L

mL
� rV

aA
V

mV

!
dP

dx
�50a�

where the coe�cients are given by

A0 � �mÿ 1� ~h� 1

AL � �1ÿm�2 ~h
5 � �1ÿm� ~h4 � �3mÿ 5� ~h3 � 3 ~h

2

AV � ÿ�1ÿm�2 ~h
5 �

ÿ
6m2 ÿ 11m� 5

�
~h
4 ÿ

ÿ
9m2 ÿ 21m� 10

�
~h
3 �

ÿ
4m2 ÿ 17m

� 10
�

~h
2 � 5�mÿ 1� ~h� 1 �50b�

where m is the viscosity ratio Eq. (10).
These ¯uxes may be expressed di�erently by using the following relations. The thickness of

the liquid layer within the channel is given by
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h � NL
aMa

rL
a
� NLML

rL

where Mb is an equivalent molar mass

Mb � Xb
1M1 � Xb

2M2

Finally, note that the densities rL
a in the liquid and rV

a in the vapor are related by

rL
a �

1

Ka

ÿ
1ÿ ~h

�NL

NV
rV
a

Introduction of these relations into the previous expression yields

qa � ÿ H 2

12A2
0

rV
a

mV

 
m

Ka

1ÿ ~h

~h

NL

NV
AL � AV

!
dP

dx
�51a�

Equivalently, the partial mass ¯uxes qa are written as (cf. Eq. (11))

qa � qa
q1 � q2

�
rV
a

�
m
Ka

1ÿ ~h
~h

N L

NV
AL

AV � 1
�

X
a

rV
a

�
m
Ka

1ÿ ~h
~h

N L

NV
AL

AV � 1
� �51b�

First note that Eq. (51b) can be summarized by the simple statement that q1 is constant
along the channel. Observe that q1 can be evaluated at any point where P and z1 are
known. Indeed, the right-hand-side of Eq. (51b) only contains quantities which can be
deduced from P and z1: It is remarkable that the partial mass ¯uxes qa depend only on the
reservoir conditions �P, z1�, irrespective of the channel height H or global mass ¯ux Q. Of
course, this property holds only for the simple geometry under consideration, although
similar results can be expected in other con®gurations, as long as surface tension e�ects can
be ignored.
Knowing q1, it is a simple task to determine z1 for any given pressure, by solving Eq. (51b),

which is an equation of the general form

F�P, z1� � q1 �52�
Eq. (52) is strongly non-linear. In the program, an alternative form of Eq. (51b) is solved,
namely

m
1ÿ ~h

~h

NL

NV

AL

AV
� K1K2

q1
M1Y1
ÿ q2

M2Y2

q2
M2X2
ÿ q1

M1X1

�53�

An iterative procedure, based on a standard Newton's method, is used for this purpose.
As a consequence of Eq. (52), the possible evolutions of the mixture starting from given

conditions can be drawn as a series of paths in the �P, z1�-space, irrespective of the actual
¯ow conditions. Examples are presented in Fig. 6(b), relative to the standard methane/
propane mixture at T � 37:88C. If the mole fraction z1�91� at P � 91 bars is larger than 0.65,
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Fig. 6. The asymmetrical phase distribution for a plane Poiseuille ¯ow. The left column corresponds to the plot of
the macroscopic physical quantities as functions of one another. The right column corresponds to the plot of these

quantities as functions of the reduced distance x̂: (a) Data are for the following initial values of z1: 1 (0.3), 2 (0.4), 3
(0.5), 4 (0.55), 5 (0.575), 6 (0.6), 7 (0.625). In (b) other values have been added which correspond to single phase
evolutions: 8 (0.65), 9 (0.675).
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the mixture remains monophasic for all P. Consequently, z1 does not vary. At lower
concentrations of methane, phase changes occur and induce composition variations. When
z1�91� decreases, the transition to pure vapor at low pressure causes a very sharp return to
the initial composition.
We now turn to the simulation of an actual ¯ow through the channel. As shown in the

previous paragraph, the mixture evolution in the �P, z1�-space is determined by the upstream
conditions only. However, to make the connection between the evoluting thermodynamical
state and the position along the x-axis, the channel height H and the global mass ¯ux Q0 have
to be speci®ed. De®ne a reference viscosity m0, and the dimensionless quantities

~rV � rV=r0

~mV � mV=m0 �54a�
Then, use the de®nition Eq. (47a) of the reduced distance x̂ and sum the dynamic equation Eq.
(51b) over components 1 and 2; we obtain

dP

dx̂
� ÿ

0@A2
0

AV

~mV

~rV

1

1�m1ÿ ~h
~h

N L

NV
AL

AV
ML

MV

1A �54b�

This is a classical relationship between the pressure gradient and the ¯ow rate in a layered
plane Poiseuille ¯ow. If the ¯ow is single-phase �b�, Eq. (54b) reduces to

dP

dx
� ÿ 12mb

H 2rb
Q0

or equivalently, with the introduction of permeability

dP

dx̂
� ÿ 12

H 2
K �54c�

Hence, a remarkable result of these transformations and of the use of the reduced distance is
that all the quantities in the right-hand-side of Eqs. (54a)±(54c) depend only on the local
pressure P.
The numerical simulations are conducted by varying P by constant steps dP, in order to

cope more easily with possible sharp variations of the state variables. This detailed procedure
is thus di�erent from the general algorithm where saturation steps were imposed. If such
singularities arise, for example at a transition from a single-phase to a two-phase ¯ow,
constant pressure steps ensure that the phenomena are accurately represented. In some sense, it
corresponds to a spatial mesh re®nement in the transition regions. The iterative procedure may
be schematized by

1. Given the initial conditions �P, z1�, evaluate q1, the various mole fractions and the physical
constants at x � 0:

2. Vary P by dP: The corresponding abscissa dx is determined by inverting Eqs. (54a)±(54c).
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Simultaneously, determine the new composition z1 by solving Eq. (52), and calculate the
corresponding mole fractions, volume fractions and physical constants by solving the ¯ash
problem.

3. Repeat step 2.

It should be noted that since the thermodynamical variables for a given pressure are always
evaluated only as functions of P and the partial mass ¯ux q1 determined once for all at x � 0,
there is no risk to accumulate errors in this respect. The only possible cumulative error
concerns the relation P�x�: The relevant parameter here is the pressure step dP:
Systematic results are displayed in Fig. 6. All these results are independent of the ¯ow rates.

The reference viscosity mo is always taken at P � 91 bars for the phase present at the reservoir
conditions (cf. Table 2). In addition, if K � 0:2� 10ÿ12 m2, the distance is related to the
reduced distance by

x � 0:208
x̂

Q0
for z1�91� � 0:6

x � 0:268
x̂

Q0
for z1�91� � 0:5 �55�

Except for Fig. 6(b), where it is shown that ¯ow remains single phase for z18 > 0:65, a
series of initial compositions have been chosen which vary between 0.3 and 0.625. Various
representations can be chosen to display the evolution of the three major variables; may be
the easiest ones to consider is when they are given as functions of the reduced distance x̂:
This is shown in Fig. 6(d)±(f). As expected the evolution of the liquid saturation in Fig. 6(e)
provides two regimes depending upon the initial composition. When z18 is smaller than
approximately 0.56, the ¯uid undergoes a liquid to gas transformation; but when z18 is
larger than this value, but smaller than 0.63 (see Fig. 4), the gas condensates partially and
then vaporizes entirely again. This is also seen di�erently in Fig. 6(a), where the loops
correspond to retrograde condensation; in this representation, SL and z1 go back to their
initial values.
The second interesting item is the evolution of the pressure and composition along x. The

evolution of the pressure is signi®cantly in¯uenced by the value of the initial composition;
when z18 � 0:3, the reduced distance for a given pressure drop is the largest one; the distance is
then signi®cantly reduced by a factor 0.6 for z18 � 0:5:
The composition z1 always displays the same behaviour whatever its initial value is when

the second phase appears, the composition starts decreasing until some minimal value and
then increases to its initial value that it reaches when a single phase remains. However, we
shall see at the end of this Section that this is not a general feature; it is caused by the fact
that the second phase in its initial growth remains close to the wall, in a low velocity
region.
More complex representations can be used when one variable is plotted as a function of one

of the two others; this is done in Fig. 6 (a)±(c). The most impressive feature of these
representations is the loop that the saturation describes when it is plotted as a function of z1
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when retrograde condensation occurs. These abstract representations were found useful to
check the precision of our computations, since it turned out that a major cause of error in the
evolution curves is Eq. (46); since it is only used to compute x̂, the imprecision in this variable
is not shown in Fig. 6(a)±(c).
Needless to say, various tests were performed in order to check the accuracy of these codes;

for instance, the in¯uence of the pressure step has been carefully studied.

4.2. Comparisons with the general code and accuracy checks

A long series of tests was actually performed which will be brie¯y accounted for. Three
programs were used in order to predict the evolution of the ¯uid

The semi-analytical routine based on the parabolic pro®le and presented in the previous
section; it will be called the analytical program for sake of brevity.
The general program described in Sections 2 and 3, but where the determination of the ¯ow
®eld by the lattice Boltzmann algorithm has been replaced by the parabolic pro®les Eq. (49).
It will be called the numerical program.
The full general program described in Sections 2 and 3, with the ILB algorithm. It will be
called the ILB program.

In the numerical and the ILB programs, the evolution of the mixture is controled by two
numerical parameters, namely the saturation step dSL used in Eq. (44) and the precision
parameter Z used for the composition in Eq. (45).
The in¯uence of the saturation step is shown in Fig. 7 for the two cases of a liquid to gas

saturation and retrograde condensation. In these checks, an asymmetrical con®guration has
been used as displayed in Fig. 5(a). Two sets of data corresponding to (i) and (ii) are
displayed in this ®gure. It is seen that the di�erence between these two cases is very small
and is mostly due to the error made in Eq. (46); this can be proved by displaying the results
as in Fig. 6(a)±(c).
The in¯uence of Z was also checked. In one case, a large value of Z � 0:1 has been imposed;

in the second case, a much smaller value of Z � 0:001 has been used, but because of the
dramatic increase of the computation time, the iterations in loop 2 were limited to 5. Again the
results are very close to one-another and to the semi-analytical calculations in case (i) where
the parameter Z does not appear.
The full calculations performed with the lattice Boltzmann code were also compared with

cases (i) and (ii). Again the agreement between the various cases is very good and the major
di�erence can be attributed to the error made in the evaluation of the pressure gradient by the
centered di�erence Eq. (46).
Finally, a last series of computations were done in a plane Poiseuille ¯ow for retrograde

condensation, but instead of putting the gas phase at the wall (cf. Fig. 5(a)), it is located in the
central part of the channel (cf. Fig. 5(b)). Computations were made by the ILB code. Results
are displayed in Fig. 8. It is interesting to note that z1 is almost constant throughout.
Comparison with the right column of Fig. 7 is also instructive, since a di�erence in the initial
phase distribution yields important di�erences in the subsequent evolution of the saturation;
such a behaviour will be con®rmed in other geometries.
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Fig. 7. In¯uence of the saturation step dSL and comparison between various techniques for the asymmetrical phase
distribution for a plane Poiseuille ¯ow. The left column corresponds to a liquid to gas (LG) evolution, the right
column to retrograde condensation (RC). General conditions are given in Table 2. The solid line corresponds to the

analytical program. The various dots are obtained with the numerical program; saturation steps are: w (0.01), �
(0.05).
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Fig. 8. Retrograde condensation for a symmetrical phase distribution in a plane Poiseuille ¯ow. The initial

composition z18 � 0:6: The various quantities are plotted as functions of the reduced distance x̂:
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5. Numerical applications

A series of numerical applications are given in this Section of the general algorithm
described above. The two-dimensional cases have been selected because they o�er the
opportunity of an easy visualization of the evolution of the phases, while the three-dimensional
reconstructed porous medium is closer to physical reality, but hard to visualize; in each case a
particular feature will be brie¯y studied. Orders of magnitude of the CPU times will be given
for the last two cases.
The general conditions are given in Section 3.4. Table 2 gives the physical values of the

parameters. Table 3 provides all the sets of geometrical parameters which were studied, the
normalized permeability K=a2 of each con®guration as well as the capillary numbers which are
related to the mass ¯ow rates which were used; the dimensional permeability of the
reconstructed medium is given to be 1.85 mDarcy.

5.1. Periodic constrictions

The major purpose of this particular study is to provide an application of the ILB code in a
simple case where already the velocity ®eld is out of reach of analytical techniques. The two-
dimensional porous medium is made of a periodic series of constrictions as shown in Fig. 9(a);
these elementary constrictions are two-dimensional and their geometrical parameters are given
in Table 2 for the sake of completeness. The channel can be decomposed into unit cells of
length L as shown in Fig. 9(a); spatially periodic boundary conditions are applied and only the
content of such a unit cell is displayed in Figs. 9(b) and 10.
In order to speed up the computations, the ¯ow rates and the capillary numbers are very

high; hence, they are not intended to illustrate what is usually going on in a porous medium.
In a ®rst step, two initial compositions have been analyzed with a small and a large total

mass ¯ow rate; the second phase was assumed to appear in a symmetrical way. Then, the
in¯uence of this symmetry on the results has been studied for a large ¯ow rate and will be
shown to have a signi®cant in¯uence on the results.
Let us consider the liquid to gas evolution which is displayed in Fig. 10. Only the

con®gurations where two phases are present, are displayed in this Figure. One starts from
a symmetrical situation where the gas phase is assumed to ®ll a small plane channel in

Table 3
Geometrical parameters and capillary numbersa

Geometry Geometrical
parameters

Permeability
K/a2

Capillary
z18 � 0:5

numbers
z18 � 0:6

Constriction e � 5a, h � 30a,
H � 90a, L � 25a

31.56 10ÿ4, 13 7:4� 10ÿ4, 95

Two-dimensional network e � 0:64 2.08 0.13, 13 1, 95
Reconstructed medium e � 0:157 0:445� 10ÿ3 3:6� 10ÿ3, 7:6� 10ÿ2 2:6� 10ÿ2, 2:6� 10ÿ1

a The ®rst line corresponds to small mass ¯ow rates and the second line to large rates.
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Fig. 9. Two-dimensional constriction. (a) Schematic diagram with de®nition of the major geometrical parameters.
The unit cell is indicated by the broken lines. The streamlines are tentatively indicated by the circular solid lines

with arrows. (b) Evolution of the phase distribution between stages A and B of Fig. 10; this corresponds to the
application of the ILB program in loop 2 (cf. Fig. 3).
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the middle of the constriction. Each of the sub®gures of Fig. 10 corresponds to the phase
distribution after the peeling stage, i.e. just before the ILB code is applied; in other
words, this is at the beginning of loop 1 where a new phase distribution is proposed (cf.
Fig. 3). The liquid phase disappears progressively as pressure decreases and the phase
distribution retains an approximately symmetrical shape; the approximate character is due

Fig. 10. Phase distribution in the two-dimensional constriction before the application of the ILB program. Data are

for: initial composition z18 � 0:5; Q0 � 2567 kg/m2 s.
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Fig. 11. Evolution of the macroscopic parameters for the two-dimensional constriction. The left column corresponds

to a liquid to gas (LG) evolution, the right column to retrograde condensation (RC). General conditions are given
in Table 2. Data are for: Q0 � 2567 kg/m2 s (w: symmetrical con®guration; +: asymmetrical con®guration),
Q0 � 25:67 kg/m2 s (�: symmetrical con®guration).
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to the fact that the ILB code necessarily contains some ¯uctuations which induces, after
some time, some asymmetry.
A feature is worth mentioning, namely the creation of bubbles within the dead ¯uid region

located between the teeth of the constriction. In order to explain this feature, the evolution of
the phase distribution during loop 2 when the average ¯ow rates are determined by using the
ILB code, is given in detail in Fig. 9(b) between the two steps marked by A and B in Fig. 10.
Fig. 9(b) corresponds to an evolution at constant saturation; the formation of bubbles can be
understood by considering the approximate picture of Fig. 9(a) which gives the streamlines in
single phase between the teeth; most likely recirculation inside the dead ¯uid region induces an
eddy which drags the central gas phase upstream as displayed in the middle line of Fig. 9(b).
Then the gas phase is separated from the central stream and a bubble is formed. If one goes
back to Fig. 10, one can see that after B the phase distribution tends to be more and more
complex for about seven steps; however, because of the successive peelings, the distribution is
progressively simpli®ed.
The corresponding macroscopic quantities are shown in Fig. 11. There is no essential

qualitative di�erence between this picture and the corresponding picture for Poiseuille ¯ow in
Fig. 7. The composition is drastically modi®ed, but goes back to its initial value when liquid
has disappeared totally; however, the composition variations are larger for the constriction
than for the Poiseuille ¯ow.
Similar calculations were performed for retrograde condensation. The evolution of the phase

distribution is displayed in Figs. 12 and 13. In both cases, the liquid is assumed to appear ®rst
under the form of a small droplet. In Fig. 12, the droplet is located in the center of the
channel; as before the symmetric con®guration remains approximately symmetric along the
computations; the droplet grows and the liquid saturation goes up to 0.05 and decreases back
to zero. The situation is drastically changed if the initial droplet is placed in an asymmetric
position as in Fig. 13; it is seen in Fig. 11 that the liquid saturation goes up to 0.18 which is
more than three times the previous value; simultaneously, the composition z1 instead of
increasing starts decreasing. However, the piezometric curves do not show such drastic
di�erences. As for the plane Poiseuille ¯ow studied in the previous Section, the composition
and the saturation di�erences are induced by the mass conservation of each component; when
the droplet is located in the slow ¯uid region instead of being in the fast one, the ful®lment of
these conditions induces large di�erences.
In a real experiment, nucleation of droplets (and of bubbles) is known to occur preferentially

on heterogeneous sites which may be either at the walls or located on small impurities which
are convected by the ¯uid; wetting properties of the solid phase also play an important role.
Unless caused by speci®c reasons, nucleation on particles is likely to occur at random within
the gas and the two situations depicted in Figs. 12 and 13 have equal probabilities; moreover,
nucleation can occur at the walls. A general calculation could be done according to the
following lines; the initial droplet would be located at random within the ¯uid phase and on
the walls; the evolution curves would be the statistical averages of all the curves.

5.2. Two-dimensional network

An arbitrary two-dimensional network was used to show another application of our code to
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Fig. 12. Symmetrical phase distribution in the two-dimensional constriction before the application of the ILB
program. Data are for: initial composition z18 � 0:6; Q0 � 2567 kg/m2 s.
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Fig. 13. Asymmetrical phase distribution in the two-dimensional constriction before the application of the ILB
program. Data are for: initial composition z18 � 0:6; Q0 � 2567 kg/m2 s.
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a relatively simple structure. As before four overall conditions were studied with two di�erent
compositions and two di�erent ¯ow rates as displayed in Table 2. On an IBM Risk station, it
takes about 24 h to complete one step in the loop over saturation in Fig. 3.
One of the major aspects of this example is to clearly demonstrate the crucial importance of

the ¯ow rates on the evolution of the mixture. We always started from the same overall
conditions and from the same initial phase distribution which is now perpendicular to the
average pressure gradient; this con®guration will hopefully ensure a good mixing of the phases
within the network. For the sake of completeness, other initial phase distributions should be
studied; we shall come back later on this point. In this respect, note that this network has been
designed in such a way that it does not possess any symmetry; because of this feature, one may
think that whatever the initial con®guration, the phases will be well mixed in contrast with
Poiseuille ¯ow or the constriction where the con®guration tends to keep its initial symmetry.
The same remark as for the Poiseuille ¯ow applies here since the ¯ow rates (and the capillary
numbers) are too high to be representative of standard situations in real porous media.
Let us start with a large ¯ow rate and an initial composition z1 � 0:5 which yields a liquid

to gas evolution. The evolution of the phase distribution is represented in Fig. 14. The initial
transversal distribution is immediately broken up into a series of small bubbles and most of
them ¯ow along the longitudinal channels. The liquid saturation decreases and when it is equal
to 0.5, there is a sudden breakthrough of the gas phase through the network; subsequently, the
liquid phase is mostly located in the transversal channels without a signi®cant ¯ow rate and it
gradually disappears.
When the ¯ow rate is divided by a factor 100, the evolution is displayed in Fig. 15. The

beginning is close to the previous one with a breakup of the initial transversal gas phase into
many small bubbles. However, when SL is equal to 0.5, the two phase distributions are
signi®cantly di�erent; now the gas phase does not make any breakthrough through the
network as before, but it looks like a series of liquid and gas transversal slices; a continuous
and transversal liquid phase still exists until SL is smaller than 0.2.
The corresponding macroscopic curves are shown in Fig. 16. Again the composition and

saturation curves display signi®cant di�erences along the evolution while the dimensionless
pressure does not change that much; this may be misleading, because of the de®nition, Eqs.
(47a) and (47b), of the reduced abscissa; for the same real abscissa, the reduced abscissae di�er
by a factor 100; hence, the pressure drop for the low ¯ow rate is comparatively much larger
than that for the large ¯ow rate.
The same computations were performed for the larger methane global molar fraction z1 �

0:6 which yields retrograde condensation (see Figs. 17 and 18). For the large ¯ow rate, the gas
phase is seen to keep a continuous track across the network though the liquid saturation goes
up to 0.6 (cf. Fig. 17); as before the liquid phase is mostly con®ned within the transversal
channels with probably a low overall ¯ow rate. The liquid saturation goes down again. Fig. 18
which corresponds to a low ¯ow rate, displays completely di�erent pictures since SL only
increases up to 0.16 which is about four times less than before; it seems that the liquid phase is
relatively more present in the longitudinal channels than in Fig. 17 for comparable values of
the liquid saturation.
The overall quantities are also displayed in Fig. 16. As previously mentioned, the maximal

liquid saturations are very di�erent, in contrast with the evolution of pressure. The
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Fig. 14. Phase distribution in the two-dimensional network before the application of the ILB program, i.e. at the
beginning of loop 1 where a new phase distribution is proposed (cf. Fig. 3). Data are for: LG, initial composition

z18 � 0:5; Q0 � 2567 kg/m2 s.

S. BeÂkri et al. / International Journal of Multiphase Flow 27 (2001) 477±526516



Fig. 15. Phase distribution in the two-dimensional network before the application of the ILB program, i.e. at the
beginning of loop 1 where a new phase distribution is proposed (cf. Fig. 3). Data are for: LG, initial composition
z18 � 0:5; Q0 � 25:67 kg/m2 s.
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Fig. 16. Evolution of the macroscopic parameters for the two-dimensional network. The left column corresponds to
a liquid to gas (LG) evolution, the right column to retrograde condensation (RC). General conditions are given in
Table 2. Data are for: w �Q0 � 2567 kg/m2 s),� (Q0 � 25:67 kg/m2 s).
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Fig. 17. Phase distribution in the two-dimensional network before the application of the ILB program. Data are for:

LG, initial composition z18 � 0:6; Q0 � 2567 kg/m2 s.
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Fig. 18. Phase distribution in the two-dimensional network before the application of the ILB program. Data are for:
LG, initial composition z18 � 0:6; Q0 � 25:67 kg/m2 s.
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compositions go down as was the case for the constriction with an asymmetry; this may mean
that the liquid phase is preferentially created in the low velocity regions. As for saturations, the
variations are much larger for large ¯ow rates.

5.3. Reconstructed media

The reconstructed sample corresponds to a Vosges sandstone of porosity e � 0:16; the unit
cell contains 203 elementary cubes of size a � 2:04 mm; it is represented in Fig. 2(c). It should
be noticed that each cube is discretized into eight elementary cubes. Note also that single phase
calculations in Adler et al. (1990) were started with precisely the same numbers and that the
obtained permeabilities were comparable to the experimental data. This case is the closest one
to the real porous media, though the capillary numbers are too high. It might be useful to
recall that the ¯ow is only slowly varying and that the ¯uid is in thermodynamic equilibrium in
agreement with Eqs. (1), (33a) and (33b). On an IBM Risk station, it takes about 36 h to
complete one step in the loop over saturation in Fig. 3.
For three-dimensional media, it is di�cult to get a clear picture of the phase evolution and

so only overall quantities will be provided. As for the two-dimensional networks, four cases
were investigated with two initial compositions and two ¯ow rates (cf. Table 2). The nucleation
problem remains the same as before and it was chosen to create the second phase as a slice
perpendicular to the average pressure gradient; again more systematic studies of the in¯uence
of the initial phase distributions are needed. In order to give an idea of the precision, two
saturation steps dSL � 0:02 and 0.1 were systematically used for the LG evolution; it will be
seen in Figs. 19±21 that the results are very close one to another; hence, a large saturation step
could be used for systematic calculations without a signi®cant loss in precision.
The classical macroscopic results are provided in Fig. 19 for the liquid to gas evolution and

the retrograde condensation. Let us start with the liquid to gas evolution; again the
dimensionless pressure variations are widely di�erent, but they are still more di�erent if one
goes back to the dimensional values. The same comments as for the two-dimensional network
also apply in this case; it is remarkable how close the present variations are from the previous
case, in the overall behaviour of the curves, but also in the details of the variations with the
¯ow rates. For instance, the evolutions of the composition and of the liquid saturations are
very similar.
The evolutions for retrograde condensation are somewhat less important than before. The

dimensionless pressure variations for the two ¯ow rates are close, but less close than for the
two-dimensional network. However, the evolution of the compositions and of the liquid
saturations are also less marked than before.
Note that for both liquid to gas evolution and retrograde condensation, the composition z1

goes down as for the asymmetric constriction. Again one may think that the second phase is
preferentially created in the low velocity regions.
Hence, from the comparison between these two series of curves, it seems that the in¯uence

of the ¯ow rate is approximately the same. This is further con®rmed by the relative
permeabilities which are displayed in Fig. 19. These permeabilities are determined by means of
the ¯ow rate of each phase. It is remarkable to see that the liquid permeability KL

r is strongly
decreased when ¯ow is increased both for the liquid to gas evolution and retrograde
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Fig. 19. Evolution of the macroscopic parameters for the reconstructed porous medium. The left column
corresponds to a liquid to gas (LG) evolution, the right column to retrograde condensation (RC). General

conditions are given in Table 2. Data are for: Q0 � 7 kg/m2 s (w: dSL � 0:1; +: dSL � 0:02); Q0 � 7 kg/m2 s (�).
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Fig. 20. Evolution of the relative permeabilities for the reconstructed porous medium as functions of the reduced
distance x̂: The left column corresponds to a liquid to gas (LG) evolution, the right column to retrograde
condensation (RC); the ®rst line corresponds to relative liquid permeability, and the second line to relative gas
permeability. General conditions are given in Table 2.. Data are for: Q0 � 7 kg/m2 s (w: dSL � 0:1; +: dSL � 0:02);
Q0 � 7 kg/m2 s (�).
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Fig. 21. Evolution of the relative permeabilities for the reconstructed porous medium as a function of liquid

saturation SL: The left column corresponds to a liquid to gas LG evolution, the right column to retrograde
condensation RC; the ®rst line corresponds to relative liquid permeability, and the second line to relative gas
permeability. General conditions are given in Table 2. Data are for: Q0 � 7 kg/m2 s (w dSL � 0:1; +:dSL � 0:02);
Q0 � 7 kg/m2 s (�).
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condensation. When the global ¯ow rate is increased by a factor 100, K L
r is decreased by

approximately two orders of magnitude. This is exactly what was anticipated in Figs. 14, 15,
17 and 18 for two-dimensional networks. Needless to say, when KL

r is decreased by two orders
of magnitude, it can be considered as equal to zero from the experimental point of view.
However, the gas permeability KG

r has a very di�erent evolution. Its ®rst characteristic is that
it remains close to 1 and that it depends much less upon the ¯ow rate than KL

r :
A di�erent view, perhaps closer to some lab experiments, can also be given in Fig. 21 where

the relative permeabilities are plotted as functions of the liquid saturation. Again the role of
the ¯ow rate is clear for KL

r : Nothing really new appears for the liquid to gas evolution.
However, it is quite interesting to consider the evolution of KL

r for retrograde condensation; an
hysteresis cycle is created and KL

r is smaller when the liquid saturation decreases; because of
the history of the ¯ow and of the value of the ¯ow rate, the liquid phase is progressively
pushed in the dead ¯uid regions.

6. Concluding remarks

Preliminary results on multicomponent multiphase ¯ows through porous media are given in
this paper. In every aspect of the analysis, a great e�ort has been done to be closer to the
practical situations of interest.
This analysis necessarily induces a signi®cant numerical e�ort. It should be noticed that at

the moment, the limiting factor is the length of the computations, rather than the size of the
memories.
The present study can be extended in many ways. Variations of important physical

parameters such as temperature, nature and number of the components, porous medium and
mass ¯ow rates could be systematically investigated. Statistical studies on nucleation sites could
also be systematically performed, as well as the in¯uence of the initial phase distribution.
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